INDUSTRIAL IMPLEMENTATION OF AM Why is it still so slow? What is the role of simulation? Prof. Dr. Jens Telgkamp Hochschule für Angewandte Wissenschaften Hamburg (University of Applied Science) March 4th, 2021 #### **OPENING STATEMENT** # SIMULATION | 3D Print Prof. Dr. Jens Telgkamp Conference March 04th, 2021 2 pm - 6 pm UTC/GMT +2 "Additive Manufacturing is a fascinating technology, but still a bit weak when it comes to implementation. Let's have a closer look at what can be done to further improve!" # **AM @ HAW HAMBURG** AM @ HAW Hamburg highlights Teaching: Bachelor and master courses - AM technology (polymer/metal) - AM process chain - Design for AM and optimization 3Dspace (prototyping and part production for/with students, FFF / SLS / DLP) #### Research - · Design and business case - Hybrid processes, metal filled polymers - Direct Energy Deposition Print Strategy - Quality checks, process monitoring, NDI/NDT Sources: HAW IPT / IWS / 3Dspace Industrial implementation of AM Jens Telgkamp - University of Applied Science - HAW Hamburg ## **CURRENT GENERAL TRENDS IN AM** **Incremental Development** **ISO/TC 261 Additive manufacturing** **AM-Standards** **Ecological Footprint** Source: https://wp.wwu.edu **Tailored Materials & Processes** "Hybrid Parts" **Education & Design Thinking** **Multi Materials** # WHY ARE WE SEEING LIMITED PROGRESS IN THE AEROSPACE AM IMPLEMENTATION? Reason 1: We need to master the challenge in between single part and process qualification **Single Part Qualification** **Full Process Qualification** → > Increasing value, also: more effort → > - The complete manufacturing route is "frozen" for THIS part (blank) at THIS supplier - Good option if a limited number of parts is going to be produced with this technology - Today: standard procedure for casting and forging parts i.e. this is common for some state-of-the-art technologies - Provides freedom to realize new geometries, part families, rapid changes / improvements, ... - Good option if a high number of parts is going to be produced with this technology - Today: standard procedure for sheet metal forming, peening, etc. AM is more ambitioned than that! HAW HAMBURG # WHY ARE WE SEEING LIMITED PROGRESS IN THE AEROSPACE AM IMPLEMENTATION? Reason 2: long process chain for safety critical (e.g. aerospace) parts with its bottlenecks Source: BDLI Industrial implementation of AM Jens Telgkamp – University of Applied Science – HAW Hamburg ### WHY ARE WE SEEING LIMITED PROGRESS IN THE AEROSPACE AM **IMPLEMENTATION?** Reason 3: We have too many mono-disciplinary AM application ideas! Jens Telgkamp - University of Applied Science - HAW Hamburg ### THE ROLE OF AM PROCESS SIMULATION A typical AM process chain and the role of manufacturing process simulation HAW **HAMBURG** #### THE ROLE OF AM PROCESS SIMULATION Potential **Business Cases** for Manufacturing Process Simulation Generating parts with increased geometric accuracy through simulation - → Extending the applications of AM regarding the part selection or integration opportunities - → Minimizing post processing of functional surfaces if compensation of geometry is utilized based on simulation - → The <u>business case</u> here is mainly related to increase AM opportunities and increase efficiency in serial production Modifying process parameters, part orientation, etc. through simulation - → Preventing AM build jobs from being destroyed by distortion and residual stress during the build job - → We assume that today's AM jobs are largely over-supported when supports are not simulation based - → The <u>business case</u> here is mainly related to increase efficiency (supports) and decrease of scrap rate for single parts and serial production "First Time Right" through simulation, reduce non-recurring cost - → Use of simulation during the development phase of new AM components and parts - → The business case here is production cost and lead time specially for single parts and small series #### IN CONCLUSION #### Some key points: - · AM parts are still expensive, so many industries focus on critical parts and applications - → Then again, that's difficult, because with today's maturity we need a long physical process chain - → More research will be needed to relax this disadvantage (e.g. on process monitoring, interacting process steps, ...) - In addition, these industries expect the full benefit and geometric design freedom from AM - → They go for a <u>full process qualification</u> rather than qualifying single part designs with a "frozen" process chain - → This is very ambitioned, but requires in-depth understanding and long-term experience of the whole process - · More multi-disciplinary thinking is necessary to exploit the full potential of AM - → Not "only thinking in the product", but also question application, system architecture, combine benefits, ... - → A role for education and training - When it comes to the role of manufacturing process simulation, there are several types of business cases, e.g.: - from increasing geometrical accuracy - from modifying the way we build AM parts, based on simulation - from the "right first time" idea - · Strong networks are needed to master the challenges, we can do it! ### NEED FOR NETWORKS AND COOPERATION TO MASTER THE CHALLENGE The BDLI / AMIAS network at a glance ACHIS Newsletter des BDLI Kompetenznetzwerkes Additive Fertigung in der Luft- und Raumfahrtindustrie **AMIAS - Additive Manufacturing in Aerospace** **BDLI** **BDLI** **AMIAS - Additive Manufacturing in Aerospace** **BDLI** **BDLI** **BDLI** **AMIAS - Additive Manufacturing in Aerospace** **BDLI** **AMIAS - Additive Manufacturing in Aerospace** **BDLI** **BD **Core Team** 10 persons/organisations Represented in the core / steering team: - ALM machine producers - ALM part manufacturers and OEMs - Institutes / Universities Technical work groups - LBM Process Chain & Quality, - Polymer AM and Design for AM - Direct Energy Deposition Focus i.e. on: - Quality - Demonstrators - Standardisation Competence Network: about 100 persons / conference (approx. yearly) Focus: exchange and communication 10 **Industrial implementation of AM** Jens Telgkamp - University of Applied Science - HAW Hamburg # **3D-DRUCK** NETZWERK in der Metropolregion Hamburg +++ CONNECT - DISCUSS - COLLABORATE +++ #### **Objectives** - Platform for inter-disciplinary exchange / dialog - Stengthening the AM topic in the metropolitan region Hamburg #### Ways of work - Network and exchange - · Competence, Trainings, Skills - Knowledge and technology transfer #### Work groups - AM process chain - AM materials - AM business models #### **Information** ...News, dates, players, registration: in anna.heidenreich@hk24.de 040 36138-243 HK Handelskammer Hamburg # THANKS FOR YOUR ATTENTION... ... AND I'M LOOKING FORWARD TO MEET YOU PERSONALLY ONE DAY! PROF. DR. JENS TELGKAMP HAW HAMBURG – DEPARTMENT M&P – BERLINER TOR 21 – 20099 HAMBURG JENS.TELGKAMP@HAW-HAMBURG.DE OFFICE / MOBILE phone +49 40 42875 8617 / +49 151 319 329 27